17 Fixed Effects

Solutions

This file demonstrates three approaches to estimating “fixed effects” models (remember this is what economists call “fixed effects,” but other disciplines use “fixed effects” to refer to something different). We’re going to use the wbstats package to download country-level data from the World Bank for 2015 - 2018 (the most recently available for the variables I chose). We’ll then estimate models with country fixed effects, with year fixed effects, and with both country and year fixed effects. We’ll estimate each model three ways: using the within transformation, using dummy variables, and using the plm package to apply the within transformation for us. If you don’t know what these are, go through LN5 first.

Note that the model we’ll estimate isn’t a great model in terms of producing interesting, reliable result. This is by design. Part of this chapter is introducing you to another API you can use to get data. You’ve worked with the US Census Bureau’s API to get data on US counties. Now you have experience getting data on countries from the World Bank. You are free to use either source for data for your RP. If the model here was a great one, it might take away something you want to do for your RP. This way you get experience with fixed effects models and with getting data from the World Bank, but don’t waste any potential ideas you might have for your RP. So just don’t read too much into the results. They like suffer from reverse causation and omitted variable bias (both violations of ZCM). If you’re interested in cross-country variation in life expectancy you’ll need to dig much deeper than we’ll go in this chapter.

So what do you have to do? First, go through the details of the models with country fixed effects. I already did it for you, but you should go through it (together with going through LN5) to make sure you understand. After you feel you understand country fixed effects, try to estimate the models with Year Fixed Effects yourself. Once you’ve figured that out, try to estimate the models with both Country and Year Fixed Effects yourself. Just look for the code chunk comments that say “YOUR CODE GOES HERE” or “Un-comment this out after you estimate the models.”

Solutions are posted in Moodle. The bare minimum you need to do is copy what I have in the solutions and paste it into this file. Doing that will not be considered cheating (in some classes that would be considered cheating, so always make sure you know whether using posted solutions is ok or not). If all you do is copy the solutions, however, you clearly won’t come away with a better understanding of the material, so I strongly encourage you to try to work through the questions on your own before looking at the solutions. But when you’re stuck or just can’t figure out what I’m asking, use the solutions rather than wasting time.

library(wbstats) # To get data from the World Bank API
library(plm) # To estimate fixed effects models
library(formattable) # to make colorful tables similar to Excel's conditional formatting
library(stargazer)
library(tidyverse)

## Set how many decimals at which R starts to use scientific notation 
options(scipen=3)

# This shows you a lot of what's available from the World Bank API
## listWBinfo <- wb_cachelist

# List of countries in the World Bank data
countryList <- wb_countries()

# List of all available variables (what they call "indicators")
availableIndicators <- wb_cachelist$indicators

## Sometimes it's easier to look through the indicator list if you write it to CSV and open it in Excel (you can do the same thing with the US Census data). The following does that: 
# write.csv(select(availableIndicators,indicator_id, indicator, indicator_desc),"indicators.csv")

## NOTE: if you use any of these (the full list of variables, exporting it to CSV), make sure you do NOT leave that in your final code. It doesn't belong in your RMD file. I just put these thigns in here so you see how to get to this information. 

## We'll use the following variables: 
# SP.DYN.LE00.IN    Life expectancy at birth, total (years)
# NY.GDP.PCAP.KD    GDP per capita (constant 2016 US$)
# SP.POP.TOTL   Population, total
# SP.POP.TOTL.FE.ZS Population, female (% of total population)
# SP.RUR.TOTL.ZS    Rural population (% of total population)


## Create named vector of indicators to download
indicatorsToDownload <- c(
  lifeExp = "SP.DYN.LE00.IN", 
  gdpPerCapita ="NY.GDP.PCAP.KD", 
  pop = "SP.POP.TOTL",
  pctFemale = "SP.POP.TOTL.FE.ZS",
  pctRural = "SP.RUR.TOTL.ZS"
)

## Download descriptions of on World Bank indicators (i.e., variables)
indicatorInfo <- availableIndicators %>% 
                  filter(indicator_id %in% indicatorsToDownload)


## Build description of our variables that we'll output in the HTML body
sDesc <- ""
for(i in 1:nrow(indicatorInfo)){
  sDesc <- paste0(sDesc
                  ,"<b>",
                  indicatorInfo$indicator[i],
                  " (",indicatorInfo$indicator_id[i]
                  , ")</b>: "
                  ,indicatorInfo$indicator_desc[i]
                  ,"<br>")
}

## Download data
mydataOrig <- wb_data(indicatorsToDownload, 
                      start_date = 2015, 
                      end_date = 2018)

## get vector of TRUE and FALSE where FALSE indicates there's one or more NA
noNAs <- complete.cases(mydataOrig)

## When writing this code, I first checked how many rows do have NAs, and then out of how many rows 
# sum(noNAs)
## out of how many rows:
# nrow(noNAs)

## keep rows without any NA
mydata <- mydataOrig[noNAs,]

## get count of rows for each country
countOfYearsByCountry <-  mydata %>% count(country)

## merge the count variable with the data
mydata <- inner_join(mydata,countOfYearsByCountry, by="country")

## keep only countries that have all 4 years complete
mydata <- mydata %>% filter(n==4)

## drop count variable (since all are now 4)
mydata <- mydata %>% select(-n)


## For the purposes of this chapter, lets only examine one group of countries 
## so that we can output results without it taking up hundreds of lines
## If this weren't a BP chapter we wouldn't do this

## Merge in country info (e.g., region)
mydata <- inner_join(mydata,select(countryList,country,region),by="country")

## Keep only region "Latin America & Caribbean" (so we end up with only 31 countries)
mydata <- mydata %>% filter(region == "Latin America & Caribbean") %>% select(-region)

mydata <- mydata %>% rename(year=date)

## Change scale of variables. This re-scales regression coefficients (instead of getting 0.00000123)
####  Measure population in millions of people instead of people
####  Measure GDP per Capita in thousands of 2010 US $ (instead of 2010 US $)
mydata <- mydata %>% mutate(pop=pop/1000000, 
                            gdpPerCapita=gdpPerCapita/1000)
mydata %>% select(lifeExp, gdpPerCapita, pop, pctFemale, pctRural) %>% as.data.frame() %>%
  stargazer(., type = "html",summary.stat = c("n","mean","sd", "min", "p25", "median", "p75", "max"))
Statistic N Mean St. Dev. Min Pctl(25) Median Pctl(75) Max
lifeExp 124 74.780 3.419 62.485 73.206 74.799 76.821 80.095
gdpPerCapita 124 9.122 6.447 1.261 4.838 7.664 11.188 28.845
pop 124 19.394 41.699 0.094 0.575 6.315 15.632 209.469
pctFemale 124 50.600 0.892 49.071 49.962 50.566 51.090 53.114
pctRural 124 36.488 20.834 4.666 20.210 33.952 47.906 81.485

17.1 Variables

Variable descriptions from the World Bank API. These descriptions do not reflect two changes we made (that are reflected in the table of summary statistics above and in the regression results that follow): population is measured in millions of people and GDP per capita is measured in thousands of 2010 US dollars.

GDP per capita (constant 2010 US$) (NY.GDP.PCAP.KD): GDP per capita is gross domestic product divided by midyear population. GDP is the sum of gross value added by all resident producers in the economy plus any product taxes and minus any subsidies not included in the value of the products. It is calculated without making deductions for depreciation of fabricated assets or for depletion and degradation of natural resources. Data are in constant 2010 U.S. dollars.
Life expectancy at birth, total (years) (SP.DYN.LE00.IN): Life expectancy at birth indicates the number of years a newborn infant would live if prevailing patterns of mortality at the time of its birth were to stay the same throughout its life.
Population, total (SP.POP.TOTL): Total population is based on the de facto definition of population, which counts all residents regardless of legal status or citizenship. The values shown are midyear estimates.
Population, female (% of total population) (SP.POP.TOTL.FE.ZS): Female population is the percentage of the population that is female. Population is based on the de facto definition of population, which counts all residents regardless of legal status or citizenship.
Rural population (% of total population) (SP.RUR.TOTL.ZS): Rural population refers to people living in rural areas as defined by national statistical offices. It is calculated as the difference between total population and urban population.

Source of data definitions: wbstats package

(Note that this is not how you would describe your variables in a paper, but for the purposes of this assignment, it’s an easy way to get an accurate description of each variable)

17.2 OLS

Our focus is fixed effects models, but often when estimating fixed effects models we also estimate regular OLS without fixed effects for comparison.

ols <- lm(data=mydata,lifeExp~gdpPerCapita+pop+pctFemale+pctRural)

17.3 Country Fixed Effects

Our basic OLS model is the following: \[ lifeExp_{it} = \beta_0+\beta_1 gdpPerCapita_{it} + \beta_2 pop_{it} + \beta_3 pctFemale_{it} + \beta_4 pctRural_{it} + v_{it} \] To save on notation, we’ll use generic variables (and I wrote out the “composite error term”), i.e.,

\[ y_{it} = \beta_0+\beta_1 x_{1it} + \beta_2 x_{2it} + \beta_3 x_{2it} + \beta_4 x_{4it} + (c_i + u_{it}) \]

Below there are 3 equations. The first is for country \(i\) in year \(t\) (the same as the one above). The second equation is the average over the four years for country \(i\), where \(\bar{y}_{i}=\sum_{t=2015}^{2018}y_{it}\) is the average value of \(y_{it}\) over the 4 years for country \(i\), \(\bar{x}_{ji}=\sum_{t=2015}^{2018}x_{jti}\) is the average value of \(x_{jti}\) over the 4 years for country \(i\) for the four explanatory variables \(j\in\{1,2,3,4\}\), \(\bar{c}_{i}=\sum_{t=2015}^{2018}c_{i}=c_i\) is the average value of \(c_{i}\) over the 4 years for country \(i\) (which just equals \(c_i\) because \(c_i\) is the same in all years for country \(i\)), and \(\bar{u}_{i}=\sum_{t=2015}^{2018}u_{it}\) is the average value of \(u_{it}\) over the 4 years for country \(i\). For the final equation, subtract country \(i\)’s average from the value in each year \(t\).

\[ \begin{align} y_{it} &= \beta_0+\beta_1 x_{1it} + \beta_2 x_{2it} + \beta_3 x_{2it} + \beta_4 x_{4it} + (c_i + u_{it}) \\ \bar{y}_{i} &= \beta_0+\beta_1 \bar{x}_{1i} + \beta_2 \bar{x}_{2i} + \beta_3 \bar{x}_{3i} + \beta_4 \bar{x}_{4i} + (\bar{c}_i + \bar{u}_{i}) \\ y_{it}-\bar{y}_{i} &= (\beta_0-\beta_0)+\beta_1 (x_{1it}-\bar{x}_{1i}) + \beta_2 (x_{2it}-\bar{x}_{2i}) + \beta_3 (x_{3it}-\bar{x}_{3i}) \\ &\hspace{6cm} + \beta_4 (x_{4it}-\bar{x}_{4i}) + (c_i-\bar{c}_i + u_{it}-\bar{u}_{i}) \end{align} \]

This final equation simplifies to the “within transformation” for country \(i\), \[ y_{it}-\bar{y}_{i} = \beta_1 (x_{1it}-\bar{x}_{1i}) + \beta_2 (x_{2it}-\bar{x}_{2i}) + \beta_3 (x_{3it}-\bar{x}_{3i}) + \beta_4 (x_{4it}-\bar{x}_{4i}) + (u_{it}-\bar{u}_{i}) \] because \(\beta_0-\beta_0=0\) and \(c_i-\bar{c}_i=0\), where \(\bar{c}_i=c_i\) because \(c_i\) is the same in all years for country \(i\). Mathematically, this is why the fixed effects model allows us to control for unobservable factors that do not change of time (or whatever is measured by \(t=1,,,,.T\)). If \(c_i\) is not constant for all time periods, then \(\bar{c}_i=c_i\) isn’t correct and it doesn’t drop out of the final equation. That means it remains in the equations we estimate, and our coefficients are biased.

At the end of this file there are tables that demonstrate the within transformation for our dataset. There is a table for each variable. Look at the table for Life expectancy. Find the row for Argentina (iso3c code ARG). It’s average value of life expectancy is 76.3. In 2015, their value was 76.07, which is 0.23 below Argentina’s four-year average value of 76.3. In 2016, Argentina’s life expectancy was 76.22, which is 0.08 above Argentina’s four-year average. Below this table for life expectancy is a similar table for each explanatory variable. When economists say a model has country “fixed effects,” they mean estimating an OLS regression using data transformed by this “within” transformation.

Alternatively, a model with country “fixed effects” can be estimated using the original OLS equation with the addition of a dummy variable for each country (omitting one).

\[ y_{it} = \beta_0+\beta_1 x_{1it} + \beta_2 x_{2it} + \beta_3 x_{2it} + \beta_4 x_{4it} + \sum_{i=2}^{50}\sigma_idC_i + (c_i + u_{it}) \]

where \(dC_i\) is a dummy variable with a value of 1 if that observation is country \(i\) and equals 0 otherwise (and \(\sigma_i\) is the coefficient on dummy variable \(dC_i\)).

These two models, the “within transformation” and the model with a dummy variable for each country, are mathematically and empirically equivalent. To see that they are empirically equivalent, we’ll estimate both models and compare the results. Note that the standard errors and \(R^2\) values are not equivalent, as discussed below.

## Dummy variable for each country (it automatically omits one)
countryDummies <- lm(lifeExp~gdpPerCapita+pop+pctFemale+pctRural+factor(country),data=mydata)

## Within transformation (subtract country averages from each observation for each variable)

## Create Country Averages
mydata <- mydata %>%
  group_by(country) %>%
  mutate(cAvg_lifeExp=mean(lifeExp),
         cAvg_gdpPerCapita=mean(gdpPerCapita),
         cAvg_pop=mean(pop),
         cAvg_pctFemale=mean(pctFemale),
         cAvg_pctRural=mean(pctRural)
         ) %>%
  ungroup()

## Within transformation
mydataCountry <- mydata %>%
  mutate(lifeExp=lifeExp-cAvg_lifeExp,
         gdpPerCapita=gdpPerCapita-cAvg_gdpPerCapita,
         pop=pop-cAvg_pop,
         pctFemale=pctFemale-cAvg_pctFemale,
         pctRural=pctRural-cAvg_pctRural
         )  %>%
  ungroup()

## Estimate within transformation using the transformed data
countryWithin <- lm(lifeExp~gdpPerCapita+pop+pctFemale+pctRural,data=mydataCountry)

## Using plm package
countryPlm <- plm(lifeExp~gdpPerCapita+pop+pctFemale+pctRural,data=mydata, index=c("country"), model = "within", effect="individual")
stargazer(countryDummies,countryWithin,countryPlm, 
          type = "html", 
          report=('vcs*'),
          single.row = TRUE,
          digits = 4,
          keep.stat = c("n","rsq","adj.rsq"), 
          notes = "Standard Errors reported in parentheses, <em>&#42;p&lt;0.1;&#42;&#42;p&lt;0.05;&#42;&#42;&#42;p&lt;0.01</em>", 
          notes.append = FALSE)
Dependent variable:
lifeExp
OLS panel
linear
(1) (2) (3)
gdpPerCapita 0.0781 (0.0567) 0.0781 (0.0490) 0.0781 (0.0567)
pop 0.0757 (0.0290)** 0.0757 (0.0251)*** 0.0757 (0.0290)**
pctFemale -0.1519 (0.4495) -0.1519 (0.3887) -0.1519 (0.4495)
pctRural -0.3383 (0.0388)*** -0.3383 (0.0335)*** -0.3383 (0.0388)***
factor(country)Argentina -26.1200 (2.5877)***
factor(country)Bahamas, The -24.0784 (2.1213)***
factor(country)Barbados -0.0934 (0.2628)
factor(country)Belize -8.9356 (1.6161)***
factor(country)Bolivia -21.0753 (2.4996)***
factor(country)Brazil -37.6904 (5.5544)***
factor(country)Chile -19.6422 (2.4795)***
factor(country)Colombia -21.9239 (2.3659)***
factor(country)Costa Rica -15.1925 (2.5761)***
factor(country)Cuba -16.1903 (2.4769)***
factor(country)Dominican Republic -22.2571 (2.6692)***
factor(country)Ecuador -14.1840 (2.1316)***
factor(country)El Salvador -18.9725 (1.8990)***
factor(country)Grenada -8.0250 (1.3951)***
factor(country)Guatemala -12.2289 (1.5310)***
factor(country)Guyana -7.4116 (1.1430)***
factor(country)Haiti -23.4308 (1.7766)***
factor(country)Honduras -12.5249 (1.9995)***
factor(country)Jamaica -12.4726 (1.8348)***
factor(country)Mexico -29.5143 (3.4670)***
factor(country)Nicaragua -13.7110 (1.9065)***
factor(country)Panama -13.3533 (2.1755)***
factor(country)Paraguay -15.3045 (2.3842)***
factor(country)Peru -20.3696 (2.4266)***
factor(country)Puerto Rico -21.6200 (2.3663)***
factor(country)St. Lucia 1.4818 (0.5706)**
factor(country)St. Vincent and the Grenadines -13.3274 (2.0799)***
factor(country)Suriname -19.1217 (2.3163)***
factor(country)Trinidad and Tobago -13.5569 (1.3738)***
factor(country)Uruguay -23.2122 (2.7061)***
Constant 108.8921 (24.8138)*** 0.0000 (0.0115)
Observations 124 124 124
R2 0.9986 0.6407 0.6407
Adjusted R2 0.9981 0.6286 0.5034
Note: Standard Errors reported in parentheses, *p<0.1;**p<0.05;***p<0.01

We’ve changed a few of the stargazer options for this chapter. We’re displaying standard errors instead of p-values so that we can use only one row per variable (it lets us report coefficient and standard error on one line, but not if we use p-values instead). I modified the note to say that standard errors are reported in parentheses.

Now look at the coefficient estimates. The 3 models all have the same coefficients on gdpPerCapita, pop, pctFemale, and pctRurla. In LN5 we discuss how the within transformation is equivalent to including dummy variables for each group (in this case, countries). That’s exactly what see in the table. The PLM package estimates the within transformation for us.

You also may notice that the standard errors (and statistical significance stars) are different in the middle column. When we estimate the model with dummy variables (column 1), the regular OLS standard errors are correct. But when we apply the within transformation, we need to adjust the standard errors to account for the within transformation. This would be a bit difficult for us to do. Thankfully, the PLM package correctly adjusts the standard errors (and thus p-values) for us. Thus, in practice we won’t actually want to apply the within transformation ourselves. We’re doing it in this chapter so you can see exactly what it is in practice and see that the coefficient estimates for all 3 versions result in the same coefficients.

If you compare the \(R^2\) values across models, you’ll notice that the \(R^2\) for the model with dummy variables is much higher. Including all the dummy variables makes it artificially high. We want to use the \(R^2\) from the within transformation. The PLM model does this for us.

Another reason we want to use the PLM model when we estimate fixed effects models is that we often don’t want to see all of the coefficients on the dummy variables. For country fixed effects, the coefficient on each country dummy is estimated off of only 4 observations. Thus, it is not a reliable estimate of the effect of being Argentina (or Belize, etc). It still allows us to estimate the model with country fixed effects, even if we don’t care about the coefficient estimates themselves. However, if we had not dropped all countries except South America, we would have hundreds of dummy variables. If we were estimating a model using US county data, we would have over 3000. R probably wouldn’t even let us estimate a model with that many variables. This again makes the PLM package preferable.

17.4 Year Fixed Effects

Above you saw how to estimate models with country fixed effects in three different ways. Here, you should estimate models with year fixed effects in the same three ways. Hint: you just have to switch “country” with “year” and everythign else is the same.

## Dummy variable for each year (it automatically omits one)
yearDummies <- lm(lifeExp~gdpPerCapita+pop+pctFemale+pctRural+factor(year),data=mydata)

## Within transformation (subtract year averages from each observation for each variable)

## Create Year Averages
mydata <- mydata %>%
  group_by(year) %>%
  mutate(yrAvg_lifeExp=mean(lifeExp),
         yrAvg_gdpPerCapita=mean(gdpPerCapita),
         yrAvg_pop=mean(pop),
         yrAvg_pctFemale=mean(pctFemale),
         yrAvg_pctRural=mean(pctRural)
         ) %>%
  ungroup()

## Within transformation
mydataYear <- mydata %>%
  mutate(lifeExp=lifeExp-yrAvg_lifeExp,
         gdpPerCapita=gdpPerCapita-yrAvg_gdpPerCapita,
         pop=pop-yrAvg_pop,
         pctFemale=pctFemale-yrAvg_pctFemale,
         pctRural=pctRural-yrAvg_pctRural
         )  %>%
  ungroup()



## Estimate within transformation using the transformed data
yearWithin <- lm(lifeExp~gdpPerCapita+pop+pctFemale+pctRural,data=mydataYear)

## Using plm package
yearPlm <- plm(lifeExp~gdpPerCapita+pop+pctFemale+pctRural,data=mydata, index=c("year"), model = "within", effect="individual")
stargazer(yearDummies,yearWithin,yearPlm, 
          type = "html", 
          report=('vcs*'),
          single.row = TRUE,
          digits = 4,
          keep.stat = c("n","rsq","adj.rsq"), 
          notes = "Standard Errors reported in parentheses, <em>&#42;p&lt;0.1;&#42;&#42;p&lt;0.05;&#42;&#42;&#42;p&lt;0.01</em>", 
          notes.append = FALSE)
Dependent variable:
lifeExp
OLS panel
linear
(1) (2) (3)
gdpPerCapita 0.1938 (0.0498)*** 0.1938 (0.0492)*** 0.1938 (0.0498)***
pop -0.0009 (0.0072) -0.0009 (0.0071) -0.0009 (0.0072)
pctFemale 0.2027 (0.3512) 0.2027 (0.3468) 0.2027 (0.3512)
pctRural -0.0347 (0.0149)** -0.0347 (0.0147)** -0.0347 (0.0149)**
factor(year)2016 0.1555 (0.7745)
factor(year)2017 0.2926 (0.7746)
factor(year)2018 0.4222 (0.7747)
Constant 63.8247 (17.6194)*** -0.0000 (0.2704)
Observations 124 124 124
R2 0.2497 0.2474 0.2474
Adjusted R2 0.2045 0.2221 0.2020
Note: Standard Errors reported in parentheses, *p<0.1;**p<0.05;***p<0.01

17.5 Country and Year Fixed Effects

Now that you’ve estimated the models with year fixed effects, estimate models with both country and year fixed effects. It works the same way as above, just doing it for both country and year.

## Dummy variable for each country and each year (it automatically omits one of each)
countryyearDummies <- lm(lifeExp~gdpPerCapita+pop+pctFemale+pctRural+factor(year)+factor(country),data=mydata)

## Within transformation (subtract country AND year averages from each observation for each variable)
## We already created the country averages and year averages above so we don't need to create them again

## Within transformation
mydataCountryYear <- mydata %>%
  mutate(lifeExp=lifeExp-cAvg_lifeExp-yrAvg_lifeExp,
         gdpPerCapita=gdpPerCapita-cAvg_gdpPerCapita-yrAvg_gdpPerCapita,
         pop=pop-cAvg_pop-yrAvg_pop,
         pctFemale=pctFemale-cAvg_pctFemale-yrAvg_pctFemale,
         pctRural=pctRural-cAvg_pctRural-yrAvg_pctRural
         )  %>%
  ungroup()

##Estimate within transformation using the transformed data
countryYearWithin <- lm(lifeExp~gdpPerCapita+pop+pctFemale+pctRural,data=mydataCountryYear)

##Using plm package
countryYearPlm <- plm(lifeExp~gdpPerCapita+pop+pctFemale+pctRural,data=mydata, index=c("country","year"), model = "within", effect="twoways")
stargazer(countryyearDummies,countryYearWithin, countryYearPlm, 
          type = "html", 
          report=('vcs*'),
          single.row = TRUE,
          digits = 4,
          keep.stat = c("n","rsq","adj.rsq"), 
          notes = "Standard Errors reported in parentheses, <em>&#42;p&lt;0.1;&#42;&#42;p&lt;0.05;&#42;&#42;&#42;p&lt;0.01</em>", 
          notes.append = FALSE)
Dependent variable:
lifeExp
OLS panel
linear
(1) (2) (3)
gdpPerCapita -0.0727 (0.0365)** -0.0727 (0.0310)** -0.0727 (0.0365)**
pop -0.0108 (0.0188) -0.0108 (0.0160) -0.0108 (0.0188)
pctFemale -0.5372 (0.2734)* -0.5372 (0.2324)** -0.5372 (0.2734)*
pctRural -0.1683 (0.0270)*** -0.1683 (0.0230)*** -0.1683 (0.0270)***
factor(year)2016 0.1390 (0.0239)***
factor(year)2017 0.2773 (0.0277)***
factor(year)2018 0.4118 (0.0335)***
factor(country)Argentina -11.7615 (1.9356)***
factor(country)Bahamas, The -12.2177 (1.5912)***
factor(country)Barbados 1.2681 (0.1922)***
factor(country)Belize -7.5257 (0.9843)***
factor(country)Bolivia -15.1800 (1.5823)***
factor(country)Brazil -10.2146 (4.0039)**
factor(country)Chile -7.7168 (1.7726)***
factor(country)Colombia -9.6142 (1.7322)***
factor(country)Costa Rica -7.0988 (1.6843)***
factor(country)Cuba -8.0607 (1.6304)***
factor(country)Dominican Republic -13.7683 (1.7485)***
factor(country)Ecuador -8.2193 (1.3730)***
factor(country)El Salvador -11.7421 (1.2833)***
factor(country)Grenada -7.7944 (0.8441)***
factor(country)Guatemala -8.5278 (0.9716)***
factor(country)Guyana -9.1034 (0.7054)***
factor(country)Haiti -19.9505 (1.1098)***
factor(country)Honduras -8.8861 (1.2436)***
factor(country)Jamaica -9.0430 (1.1426)***
factor(country)Mexico -10.3310 (2.5908)***
factor(country)Nicaragua -9.7683 (1.1949)***
factor(country)Panama -6.9810 (1.4088)***
factor(country)Paraguay -10.9304 (1.4829)***
factor(country)Peru -10.4522 (1.6648)***
factor(country)Puerto Rico -7.4365 (1.8210)***
factor(country)St. Lucia -0.7730 (0.3896)*
factor(country)St. Vincent and the Grenadines -10.9295 (1.2721)***
factor(country)Suriname -13.7941 (1.4627)***
factor(country)Trinidad and Tobago -8.8542 (0.9102)***
factor(country)Uruguay -10.9637 (1.9026)***
Constant 118.0087 (15.0183)*** -108.9780 (12.1646)***
Observations 124 124 124
R2 0.9995 0.3170 0.3170
Adjusted R2 0.9993 0.2941 0.0232
Note: Standard Errors reported in parentheses, *p<0.1;**p<0.05;***p<0.01

17.6 Comparison of all models

Below we have comparisons of the four models: ols, country fixed effects, year fixed effects, and country and year fixed effects. The comparisons are done three times, one for each method of estimating the models.

17.6.1 Within Transformation

stargazer(ols,countryWithin,yearWithin,countryYearWithin, 
          type = "html", 
          report=('vcs*'),
          single.row = TRUE,
          digits = 3,
          keep.stat = c("n","rsq","adj.rsq"), 
          notes = "Standard Errors reported in parentheses, <em>&#42;p&lt;0.1;&#42;&#42;p&lt;0.05;&#42;&#42;&#42;p&lt;0.01</em>", 
          notes.append = FALSE)
Dependent variable:
lifeExp
(1) (2) (3) (4)
gdpPerCapita 0.194 (0.049)*** 0.078 (0.049) 0.194 (0.049)*** -0.073 (0.031)**
pop -0.001 (0.007) 0.076 (0.025)*** -0.001 (0.007) -0.011 (0.016)
pctFemale 0.202 (0.347) -0.152 (0.389) 0.203 (0.347) -0.537 (0.232)**
pctRural -0.035 (0.015)** -0.338 (0.034)*** -0.035 (0.015)** -0.168 (0.023)***
Constant 64.066 (17.414)*** 0.000 (0.011) -0.000 (0.270) -108.978 (12.165)***
Observations 124 124 124 124
R2 0.248 0.641 0.247 0.317
Adjusted R2 0.222 0.629 0.222 0.294
Note: Standard Errors reported in parentheses, *p<0.1;**p<0.05;***p<0.01

17.6.2 PLM Package

stargazer(ols,countryPlm,yearPlm,countryYearPlm, 
          type = "html", 
          report=('vcs*'),
          single.row = TRUE,
          digits = 3,
          keep.stat = c("n","rsq","adj.rsq"), 
          notes = "Standard Errors reported in parentheses, <em>&#42;p&lt;0.1;&#42;&#42;p&lt;0.05;&#42;&#42;&#42;p&lt;0.01</em>", 
          notes.append = FALSE)
Dependent variable:
lifeExp
OLS panel
linear
(1) (2) (3) (4)
gdpPerCapita 0.194 (0.049)*** 0.078 (0.057) 0.194 (0.050)*** -0.073 (0.036)**
pop -0.001 (0.007) 0.076 (0.029)** -0.001 (0.007) -0.011 (0.019)
pctFemale 0.202 (0.347) -0.152 (0.449) 0.203 (0.351) -0.537 (0.273)*
pctRural -0.035 (0.015)** -0.338 (0.039)*** -0.035 (0.015)** -0.168 (0.027)***
Constant 64.066 (17.414)***
Observations 124 124 124 124
R2 0.248 0.641 0.247 0.317
Adjusted R2 0.222 0.503 0.202 0.023
Note: Standard Errors reported in parentheses, *p<0.1;**p<0.05;***p<0.01

17.6.3 Dummy Variables

stargazer(ols,countryDummies,yearDummies,countryyearDummies, 
          type = "html", 
          report=('vcs*'),
          single.row = TRUE,
          digits = 3,
          keep.stat = c("n","rsq","adj.rsq"), 
          notes = "Standard Errors reported in parentheses, <em>&#42;p&lt;0.1;&#42;&#42;p&lt;0.05;&#42;&#42;&#42;p&lt;0.01</em>", 
          notes.append = FALSE)
Dependent variable:
lifeExp
(1) (2) (3) (4)
gdpPerCapita 0.194 (0.049)*** 0.078 (0.057) 0.194 (0.050)*** -0.073 (0.036)**
pop -0.001 (0.007) 0.076 (0.029)** -0.001 (0.007) -0.011 (0.019)
pctFemale 0.202 (0.347) -0.152 (0.449) 0.203 (0.351) -0.537 (0.273)*
pctRural -0.035 (0.015)** -0.338 (0.039)*** -0.035 (0.015)** -0.168 (0.027)***
factor(country)Argentina -26.120 (2.588)*** -11.762 (1.936)***
factor(country)Bahamas, The -24.078 (2.121)*** -12.218 (1.591)***
factor(country)Barbados -0.093 (0.263) 1.268 (0.192)***
factor(country)Belize -8.936 (1.616)*** -7.526 (0.984)***
factor(country)Bolivia -21.075 (2.500)*** -15.180 (1.582)***
factor(country)Brazil -37.690 (5.554)*** -10.215 (4.004)**
factor(country)Chile -19.642 (2.480)*** -7.717 (1.773)***
factor(country)Colombia -21.924 (2.366)*** -9.614 (1.732)***
factor(country)Costa Rica -15.193 (2.576)*** -7.099 (1.684)***
factor(country)Cuba -16.190 (2.477)*** -8.061 (1.630)***
factor(country)Dominican Republic -22.257 (2.669)*** -13.768 (1.749)***
factor(country)Ecuador -14.184 (2.132)*** -8.219 (1.373)***
factor(country)El Salvador -18.972 (1.899)*** -11.742 (1.283)***
factor(country)Grenada -8.025 (1.395)*** -7.794 (0.844)***
factor(country)Guatemala -12.229 (1.531)*** -8.528 (0.972)***
factor(country)Guyana -7.412 (1.143)*** -9.103 (0.705)***
factor(country)Haiti -23.431 (1.777)*** -19.951 (1.110)***
factor(country)Honduras -12.525 (2.000)*** -8.886 (1.244)***
factor(country)Jamaica -12.473 (1.835)*** -9.043 (1.143)***
factor(country)Mexico -29.514 (3.467)*** -10.331 (2.591)***
factor(country)Nicaragua -13.711 (1.906)*** -9.768 (1.195)***
factor(country)Panama -13.353 (2.176)*** -6.981 (1.409)***
factor(country)Paraguay -15.304 (2.384)*** -10.930 (1.483)***
factor(country)Peru -20.370 (2.427)*** -10.452 (1.665)***
factor(country)Puerto Rico -21.620 (2.366)*** -7.436 (1.821)***
factor(country)St. Lucia 1.482 (0.571)** -0.773 (0.390)*
factor(country)St. Vincent and the Grenadines -13.327 (2.080)*** -10.930 (1.272)***
factor(country)Suriname -19.122 (2.316)*** -13.794 (1.463)***
factor(country)Trinidad and Tobago -13.557 (1.374)*** -8.854 (0.910)***
factor(country)Uruguay -23.212 (2.706)*** -10.964 (1.903)***
factor(year)2016 0.156 (0.775) 0.139 (0.024)***
factor(year)2017 0.293 (0.775) 0.277 (0.028)***
factor(year)2018 0.422 (0.775) 0.412 (0.034)***
Constant 64.066 (17.414)*** 108.892 (24.814)*** 63.825 (17.619)*** 118.009 (15.018)***
Observations 124 124 124 124
R2 0.248 0.999 0.250 1.000
Adjusted R2 0.222 0.998 0.204 0.999
Note: Standard Errors reported in parentheses, *p<0.1;**p<0.05;***p<0.01

17.7 Data Summary by Country

stargazer(as.data.frame(mydata) , type = "html",digits = 2 ,summary.stat = c("n","mean","sd", "min", "median", "max"))
Statistic N Mean St. Dev. Min Median Max
year 124 2,016.50 1.12 2,015 2,016.5 2,018
gdpPerCapita 124 9.12 6.45 1.26 7.66 28.85
lifeExp 124 74.78 3.42 62.48 74.80 80.10
pop 124 19.39 41.70 0.09 6.31 209.47
pctFemale 124 50.60 0.89 49.07 50.57 53.11
pctRural 124 36.49 20.83 4.67 33.95 81.48
cAvg_lifeExp 124 74.78 3.41 63.08 74.80 79.84
cAvg_gdpPerCapita 124 9.12 6.44 1.27 7.63 28.10
cAvg_pop 124 19.39 41.70 0.09 6.34 206.98
cAvg_pctFemale 124 50.60 0.89 49.13 50.57 53.05
cAvg_pctRural 124 36.49 20.83 4.81 33.95 81.41
yrAvg_lifeExp 124 74.78 0.19 74.52 74.78 75.03
yrAvg_gdpPerCapita 124 9.12 0.11 9.00 9.10 9.28
yrAvg_pop 124 19.39 0.23 19.08 19.39 19.71
yrAvg_pctFemale 124 50.60 0.01 50.59 50.60 50.61
yrAvg_pctRural 124 36.49 0.29 36.10 36.49 36.87

17.7.1 Average Values for Each Country

country Avg
lifeExp
Avg
gdpPerCapita
Avg
pop
Avg
pctFemale
Avg
pctRural
Antigua and Barbuda 76.68 14.15 0.09 51.83 75.21
Argentina 76.30 10.32 43.82 51.26 8.31
Bahamas, The 73.43 28.10 0.38 51.45 17.12
Barbados 78.94 16.11 0.29 51.73 68.81
Belize 74.28 4.24 0.37 50.14 54.44
Bolivia 70.77 2.46 11.11 49.76 31.09
Brazil 75.34 11.12 206.98 50.80 13.83
Chile 79.84 14.84 18.34 50.75 12.54
Colombia 76.82 7.63 48.57 50.96 19.73
Costa Rica 79.83 9.61 4.92 49.99 21.88
Cuba 78.64 6.64 11.33 50.32 23.04
Dominican Republic 73.57 7.16 10.45 49.97 20.16
Ecuador 76.47 5.22 16.64 49.96 36.39
El Salvador 72.76 3.41 6.37 53.05 29.13
Grenada 72.41 8.63 0.11 49.58 63.87
Guatemala 73.67 3.27 15.96 50.78 49.49
Guyana 69.53 5.53 0.77 49.90 73.48
Haiti 63.08 1.27 10.91 50.64 46.14
Honduras 74.80 2.14 9.35 50.06 43.87
Jamaica 74.23 4.78 2.91 50.32 44.75
Mexico 74.94 10.22 124.04 51.09 20.28
Nicaragua 73.96 1.89 6.34 50.71 41.80
Panama 78.05 11.29 4.07 49.88 32.80
Paraguay 73.91 5.17 6.82 49.13 38.83
Peru 76.16 6.29 31.21 50.34 22.37
Puerto Rico 79.57 27.54 3.35 52.30 6.40
St. Lucia 75.83 8.89 0.18 50.75 81.41
St. Vincent and the Grenadines 72.25 6.71 0.11 49.14 48.42
Suriname 71.41 8.11 0.57 49.70 33.95
Trinidad and Tobago 73.17 15.74 1.38 50.57 46.76
Uruguay 77.57 14.28 3.43 51.75 4.81

17.7.2 Variable-Specific Values and Within Transformation for Each Country

For each variable, display each country’s values in 2015, 2016, 2017, and 2018, followed by the country’s average. These 5 columns are shaded from red (lowest) to green (highest) for each country. Then, in the final 4 columns display the within transformation (i.e., subtract the country’s average from each year’s value). These last 4 columns are also shaded for each country.

17.7.3 Life expectancy

iso3c 2015
Life Exp
2016
Life Exp
2017
Life Exp
2018
Life Exp
Avg
Life Exp
2015
Within
2016
Within
2017
Within
2018
Within
ARG 76.07 76.22 76.37 76.52 76.30 -0.23 -0.07 0.08 0.22
ATG 76.48 76.62 76.75 76.89 76.68 -0.20 -0.07 0.07 0.20
BHS 73.09 73.33 73.55 73.75 73.43 -0.34 -0.10 0.12 0.32
BLZ 74.03 74.22 74.36 74.50 74.28 -0.24 -0.06 0.09 0.22
BOL 70.28 70.63 70.94 71.24 70.77 -0.49 -0.15 0.17 0.47
BRA 74.99 75.23 75.46 75.67 75.34 -0.34 -0.11 0.12 0.33
BRB 78.80 78.89 78.98 79.08 78.94 -0.14 -0.05 0.04 0.14
CHL 79.65 79.78 79.91 80.04 79.84 -0.20 -0.06 0.07 0.20
COL 76.53 76.73 76.92 77.11 76.82 -0.29 -0.09 0.10 0.28
CRI 79.56 79.74 79.91 80.10 79.83 -0.26 -0.09 0.09 0.27
CUB 78.56 78.61 78.66 78.73 78.64 -0.08 -0.03 0.02 0.09
DOM 73.24 73.47 73.69 73.89 73.57 -0.33 -0.10 0.12 0.32
ECU 76.14 76.36 76.58 76.80 76.47 -0.33 -0.11 0.11 0.33
GRD 72.44 72.41 72.39 72.38 72.41 0.04 0.00 -0.02 -0.02
GTM 73.25 73.54 73.81 74.06 73.67 -0.42 -0.12 0.14 0.40
GUY 69.26 69.45 69.62 69.77 69.53 -0.27 -0.07 0.10 0.25
HND 74.50 74.70 74.90 75.09 74.80 -0.30 -0.09 0.10 0.29
HTI 62.48 62.90 63.29 63.66 63.08 -0.60 -0.19 0.21 0.58
JAM 74.10 74.17 74.27 74.37 74.23 -0.13 -0.05 0.04 0.14
LCA 75.60 75.75 75.91 76.06 75.83 -0.23 -0.08 0.08 0.23
MEX 74.90 74.92 74.95 74.99 74.94 -0.04 -0.02 0.01 0.05
NIC 73.65 73.86 74.07 74.28 73.96 -0.31 -0.10 0.11 0.31
PAN 77.78 77.96 78.15 78.33 78.05 -0.28 -0.09 0.09 0.27
PER 75.79 76.04 76.29 76.52 76.16 -0.37 -0.12 0.13 0.36
PRI 79.35 79.49 79.63 79.78 79.57 -0.21 -0.07 0.07 0.21
PRY 73.66 73.84 73.99 74.13 73.91 -0.24 -0.07 0.09 0.23
SLV 72.41 72.64 72.87 73.10 72.76 -0.34 -0.11 0.12 0.34
SUR 71.25 71.36 71.46 71.57 71.41 -0.16 -0.05 0.05 0.16
TTO 72.94 73.10 73.25 73.38 73.17 -0.23 -0.07 0.08 0.21
URY 77.37 77.50 77.63 77.77 77.57 -0.20 -0.07 0.06 0.20
VCT 72.10 72.19 72.30 72.42 72.25 -0.16 -0.06 0.05 0.16

17.7.4 GDP per capita

iso3c 2015
GDP per Capita
2016
GDP per Capita
2017
GDP per Capita
2018
GDP per Capita
Avg
GDP per Capita
2015
Within
2016
Within
2017
Within
2018
Within
ARG 10568.16 10239.48 10419.46 10049.56 10319.16 0.25 -0.08 0.10 -0.27
ATG 13328.15 13917.95 14220.50 15134.88 14150.37 -0.82 -0.23 0.07 0.98
BHS 27583.41 27705.93 28282.52 28845.26 28104.28 -0.52 -0.40 0.18 0.74
BLZ 4300.56 4216.98 4211.60 4217.21 4236.59 0.06 -0.02 -0.02 -0.02
BOL 2361.06 2425.56 2490.96 2559.51 2459.27 -0.10 -0.03 0.03 0.10
BRA 11431.15 10965.97 11021.72 11079.71 11124.64 0.31 -0.16 -0.10 -0.04
BRB 15836.38 16202.12 16254.24 16136.91 16107.41 -0.27 0.09 0.15 0.03
CHL 14722.37 14777.15 14741.19 15111.70 14838.10 -0.12 -0.06 -0.10 0.27
COL 7580.28 7633.39 7620.92 7694.43 7632.25 -0.05 0.00 -0.01 0.06
CRI 9219.39 9509.74 9775.85 9936.58 9610.39 -0.39 -0.10 0.17 0.33
CUB 6522.74 6550.27 6666.33 6816.90 6639.06 -0.12 -0.09 0.03 0.18
DOM 6661.87 7026.18 7273.35 7697.72 7164.78 -0.50 -0.14 0.11 0.53
ECU 5330.54 5176.06 5205.76 5180.60 5223.24 0.11 -0.05 -0.02 -0.04
GRD 8194.24 8449.31 8775.90 9091.76 8627.80 -0.43 -0.18 0.15 0.46
GTM 3210.87 3242.64 3286.74 3338.55 3269.70 -0.06 -0.03 0.02 0.07
GUY 5257.46 5429.80 5604.56 5825.04 5529.21 -0.27 -0.10 0.08 0.30
HND 2067.29 2111.19 2176.30 2219.44 2143.55 -0.08 -0.03 0.03 0.08
HTI 1260.60 1265.23 1277.37 1282.24 1271.36 -0.01 -0.01 0.01 0.01
JAM 4722.05 4761.94 4785.65 4855.26 4781.23 -0.06 -0.02 0.00 0.07
LCA 8491.99 8786.51 9046.27 9237.37 8890.54 -0.40 -0.10 0.16 0.35
MEX 10042.14 10183.03 10277.88 10385.83 10222.22 -0.18 -0.04 0.06 0.16
NIC 1836.01 1895.20 1957.84 1857.05 1886.53 -0.05 0.01 0.07 -0.03
PAN 10765.91 11107.22 11530.07 11755.11 11289.58 -0.52 -0.18 0.24 0.47
PER 6114.23 6262.37 6314.29 6453.56 6286.11 -0.17 -0.02 0.03 0.17
PRI 27518.77 27702.08 27561.05 27362.43 27536.09 -0.02 0.17 0.02 -0.17
PRY 4944.19 5089.61 5272.36 5379.58 5171.44 -0.23 -0.08 0.10 0.21
SLV 3314.70 3382.52 3441.31 3507.06 3411.40 -0.10 -0.03 0.03 0.10
SUR 8464.76 7912.69 7972.84 8100.37 8112.66 0.35 -0.20 -0.14 -0.01
TTO 16840.12 15696.90 15261.87 15161.07 15739.99 1.10 -0.04 -0.48 -0.58
URY 13938.79 14124.14 14437.38 14617.46 14279.45 -0.34 -0.16 0.16 0.34
VCT 6580.82 6686.64 6730.90 6852.60 6712.74 -0.13 -0.03 0.02 0.14

17.7.5 Population

iso3c 2015
Population
2016
Population
2017
Population
2018
Population
Avg
Population
2015
Within
2016
Within
2017
Within
2018
Within
ARG 43131966 43590368 44044811 44494502 43815411.75 -0.68 -0.23 0.23 0.68
ATG 93566 94527 95426 96286 94951.25 0.00 0.00 0.00 0.00
BHS 374206 377931 381761 385640 379884.50 -0.01 0.00 0.00 0.01
BLZ 360933 368400 375769 383071 372043.25 -0.01 0.00 0.00 0.01
BOL 10869730 11031813 11192854 11353142 11111884.75 -0.24 -0.08 0.08 0.24
BRA 204471769 206163058 207833831 209469333 206984497.75 -2.51 -0.82 0.85 2.48
BRB 285324 285796 286233 286641 285998.50 0.00 0.00 0.00 0.00
CHL 17969353 18209068 18470439 18729160 18344505.00 -0.38 -0.14 0.13 0.38
COL 47520667 48175048 48909844 49661056 48566653.75 -1.05 -0.39 0.34 1.09
CRI 4847804 4899345 4949954 4999441 4924136.00 -0.08 -0.02 0.03 0.08
CUB 11324781 11335109 11339259 11338138 11334321.75 -0.01 0.00 0.00 0.00
DOM 10281680 10397743 10513131 10627165 10454929.75 -0.17 -0.06 0.06 0.17
ECU 16212020 16491115 16785361 17084357 16643213.25 -0.43 -0.15 0.14 0.44
GRD 109599 110261 110874 111454 110547.00 0.00 0.00 0.00 0.00
GTM 15567419 15827690 16087418 16346950 15957369.25 -0.39 -0.13 0.13 0.39
GUY 767432 771366 775221 779004 773255.75 -0.01 0.00 0.00 0.01
HND 9112916 9270795 9429013 9587522 9350061.50 -0.24 -0.08 0.08 0.24
HTI 10695542 10839970 10982366 11123176 10910263.50 -0.21 -0.07 0.07 0.21
JAM 2891021 2906238 2920853 2934855 2913241.75 -0.02 -0.01 0.01 0.02
LCA 179126 180024 180955 181889 180498.50 0.00 0.00 0.00 0.00
MEX 121858258 123333376 124777324 126190788 124039936.50 -2.18 -0.71 0.74 2.15
NIC 6223240 6303974 6384855 6465513 6344395.50 -0.12 -0.04 0.04 0.12
PAN 3968487 4037078 4106771 4176873 4072302.25 -0.10 -0.04 0.03 0.10
PER 30470734 30926032 31444297 31989256 31207579.75 -0.74 -0.28 0.24 0.78
PRI 3473232 3406672 3325286 3193354 3349636.00 0.12 0.06 -0.02 -0.16
PRY 6688746 6777872 6867062 6956071 6822437.75 -0.13 -0.04 0.04 0.13
SLV 6325124 6356143 6388122 6420744 6372533.25 -0.05 -0.02 0.02 0.05
SUR 559136 564883 570501 575987 567626.75 -0.01 0.00 0.00 0.01
TTO 1370328 1377564 1384072 1389858 1380455.50 -0.01 0.00 0.00 0.01
URY 3412009 3424132 3436646 3449299 3430521.50 -0.02 -0.01 0.01 0.02
VCT 109148 109459 109827 110210 109661.00 0.00 0.00 0.00 0.00

17.7.6 Percent female

iso3c 2015
%Female
2016
%Female
2017
%Female
2018
%Female
Avg
%Female
2015
Within
2016
Within
2017
Within
2018
Within
ARG 51.27 51.26 51.25 51.24 51.26 0.02 0.01 -0.01 -0.02
ATG 51.88 51.84 51.81 51.79 51.83 0.05 0.01 -0.02 -0.04
BHS 51.47 51.45 51.44 51.43 51.45 0.02 0.01 -0.01 -0.02
BLZ 50.09 50.12 50.16 50.19 50.14 -0.05 -0.02 0.02 0.05
BOL 49.74 49.75 49.77 49.78 49.76 -0.02 -0.01 0.01 0.02
BRA 50.77 50.79 50.81 50.83 50.80 -0.03 -0.01 0.01 0.03
BRB 51.79 51.75 51.71 51.67 51.73 0.06 0.02 -0.02 -0.06
CHL 50.78 50.76 50.75 50.73 50.75 0.02 0.01 -0.01 -0.03
COL 50.99 50.97 50.95 50.93 50.96 0.03 0.01 -0.01 -0.03
CRI 49.97 49.98 49.99 50.01 49.99 -0.02 -0.01 0.01 0.02
CUB 50.31 50.31 50.32 50.33 50.32 -0.01 0.00 0.00 0.01
DOM 49.94 49.96 49.98 50.01 49.97 -0.04 -0.01 0.01 0.04
ECU 49.94 49.95 49.96 49.97 49.96 -0.01 0.00 0.00 0.01
GRD 49.56 49.58 49.59 49.61 49.58 -0.03 -0.01 0.01 0.02
GTM 50.81 50.79 50.78 50.76 50.78 0.02 0.01 -0.01 -0.02
GUY 50.00 49.92 49.86 49.81 49.90 0.10 0.03 -0.04 -0.09
HND 50.07 50.07 50.06 50.05 50.06 0.01 0.00 0.00 -0.01
HTI 50.64 50.64 50.65 50.65 50.64 -0.01 0.00 0.00 0.01
JAM 50.30 50.32 50.33 50.34 50.32 -0.02 -0.01 0.01 0.02
LCA 50.76 50.75 50.75 50.75 50.75 0.00 0.00 0.00 0.00
MEX 51.10 51.10 51.09 51.09 51.09 0.00 0.00 0.00 0.00
NIC 50.71 50.71 50.71 50.71 50.71 0.00 0.00 0.00 0.00
PAN 49.85 49.87 49.89 49.91 49.88 -0.03 -0.01 0.01 0.03
PER 50.33 50.35 50.35 50.34 50.34 -0.01 0.01 0.00 0.00
PRI 52.16 52.24 52.34 52.45 52.30 -0.14 -0.06 0.04 0.15
PRY 49.11 49.12 49.14 49.15 49.13 -0.02 -0.01 0.00 0.02
SLV 52.98 53.03 53.07 53.11 53.05 -0.07 -0.02 0.02 0.07
SUR 49.69 49.70 49.71 49.72 49.70 -0.01 0.00 0.01 0.01
TTO 50.54 50.56 50.57 50.59 50.57 -0.02 -0.01 0.01 0.02
URY 51.77 51.75 51.74 51.72 51.75 0.02 0.01 -0.01 -0.02
VCT 49.07 49.11 49.16 49.21 49.14 -0.06 -0.03 0.02 0.07

17.7.7 Percent rural

iso3c 2015
%Rural
2016
%Rural
2017
%Rural
2018
%Rural
Avg
%Rural
2015
Within
2016
Within
2017
Within
2018
Within
ARG 8.50 8.37 8.25 8.13 8.31 0.18 0.06 -0.06 -0.18
ATG 75.00 75.15 75.29 75.40 75.21 -0.21 -0.06 0.08 0.19
BHS 17.25 17.17 17.08 16.98 17.12 0.14 0.05 -0.04 -0.14
BLZ 54.59 54.51 54.40 54.28 54.44 0.15 0.06 -0.04 -0.17
BOL 31.61 31.26 30.92 30.58 31.09 0.52 0.17 -0.17 -0.52
BRA 14.23 13.96 13.69 13.43 13.83 0.40 0.13 -0.14 -0.40
BRB 68.75 68.81 68.84 68.85 68.81 -0.06 -0.01 0.03 0.04
CHL 12.64 12.58 12.51 12.44 12.54 0.10 0.04 -0.03 -0.11
COL 20.24 19.89 19.55 19.22 19.73 0.51 0.17 -0.17 -0.50
CRI 23.14 22.26 21.44 20.66 21.88 1.26 0.39 -0.44 -1.22
CUB 23.10 23.07 23.02 22.96 23.04 0.06 0.03 -0.02 -0.08
DOM 21.43 20.56 19.72 18.93 20.16 1.27 0.40 -0.44 -1.24
ECU 36.60 36.47 36.33 36.18 36.39 0.21 0.07 -0.06 -0.22
GRD 64.00 63.93 63.84 63.73 63.87 0.13 0.05 -0.04 -0.15
GTM 50.03 49.68 49.32 48.95 49.49 0.54 0.19 -0.17 -0.55
GUY 73.56 73.52 73.46 73.39 73.48 0.08 0.03 -0.02 -0.09
HND 44.84 44.19 43.54 42.90 43.87 0.97 0.32 -0.32 -0.96
HTI 47.57 46.60 45.65 44.72 46.14 1.43 0.47 -0.48 -1.42
JAM 45.17 44.90 44.62 44.33 44.75 0.41 0.15 -0.13 -0.43
LCA 81.48 81.44 81.39 81.32 81.41 0.08 0.03 -0.02 -0.09
MEX 20.72 20.42 20.13 19.84 20.28 0.44 0.14 -0.15 -0.43
NIC 42.10 41.91 41.70 41.48 41.80 0.31 0.11 -0.10 -0.32
PAN 33.30 32.97 32.63 32.29 32.80 0.50 0.17 -0.17 -0.51
PER 22.64 22.46 22.28 22.09 22.37 0.27 0.09 -0.09 -0.28
PRI 6.38 6.40 6.41 6.42 6.40 -0.03 0.00 0.01 0.02
PRY 39.25 38.97 38.70 38.42 38.83 0.42 0.14 -0.13 -0.42
SLV 30.30 29.50 28.73 27.98 29.13 1.17 0.37 -0.40 -1.15
SUR 33.94 33.96 33.96 33.94 33.95 -0.01 0.01 0.01 -0.01
TTO 46.68 46.75 46.80 46.82 46.76 -0.08 -0.01 0.03 0.06
URY 4.96 4.86 4.76 4.67 4.81 0.15 0.05 -0.05 -0.14
VCT 49.04 48.63 48.22 47.80 48.42 0.62 0.21 -0.20 -0.62

17.8 Bookdown Style Note

To get the above tables to display in bookdown I added HTML code to allow the maximum width to be larger than the default setting. If you find this messes with the rest of your book, you can remove from here to the bottom of this file instide the HTML “style” tag.